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ABSTRACT

The velocity slip effects on MHD peristaltic pumping of a Prandtl fluid
in a non-uniform channel is investigated under the assumptions of long
wavelength and low Reynolds number. A regular perturbation technique
is employed to solve the non-linear system of equations. The velocity
field, the axial pressure gradient, the pressure rise and the frictional force
over one cycle of the wave length are obtained. The results are discussed
graphically. It is noticed that the amplitude of the pressure gradient
decreases with increasing the velocity slip parameter further it increases
with increasing the Hartmann number.
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1. Introduction

Peristaltic transport is a form of fluid transport by means of a progressive
wave of area contraction or expansion propagates along the length of a disten-
sible tube. In general, this pumping takes place from a region of lower pressure
to higher pressure. It is an inherent property of many of the smooth muscle
tubes such as the gastrointestinal tract, sperm transport in the ducts efferentus
of the male reproductive tract, movement of ovum in the fallopian tube, the
bile duct, the ureter, swallowing of food through esophagus etc.

The principle of peristaltic transport is also exploited in many industrial
applications. Sanitary fluid transport, transport of corrosive fluids and blood
pumps in heart lung machines are few of these. Since the experimental work
of Latham (1996), many investigations on peristaltsis under different flow ge-
ometries have been presented by various scientists in engineering and applied
science.

Peristaltic transport in non-uniform ducts has considerable interest as many
pumps in engineering and physiological systems are known to be of non-uniform
cross-section. Srivastava and Sinha (1983) studied peristaltic transport of
non-Newtonian fluids in non-uniform geometries. Mekheimer (2004) studied
the peristaltic flow of blood (modelled as couple stress fluid) under the ef-
fect of magnetic field in a non-uniform channel. He noticed that the pressure
rise for uniform geometry is much smaller than that for non-uniform geome-
try. Prasanna Hariharan (2008) investigated the peristaltic transport of non-
Newtonian fluid (power law and Bingham fluid model) in a diverging tube with
different wall wave forms. Saravana (2011) analyzed the heat transfer on MHD
peristaltic transport of a Jeffrey fluid in a non-uniform porous channel with
wall properties.

The effect of slip may occur in polymer solutions and molten polymers.
Hayat (2012) presented the peristaltic flow of Phan - Thien - Tanner (PTT)
fluid in the presence of induced magnetic field and slip conditions. Saravana
(2013) discussed the peristaltic transport of an incompressible MHD third order
fluid in an inclined asymmetric channel with velocity slip, heat and mass trans-
fer. Vajravelu (2013) studied the peristaltic transport of a conducting Carreau
fluid in a non-uniform channel with velocity slip, thermal and concentration
jump conditions.

The fluids present in the ducts of a living body can be classified as Newto-
nian and non-Newtonian fluids based on their behavior. Among several non-
Newtonian models, Prandtl fluid model is one of the important models given
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by Patel and Timol (2010) for describing biofluids such as blood. Nooreen
Sher Akbar. (2012) studied the peristaltic transport of a Prandtl fluid model in
an asymmetric channel. Recently, RahmatEllahi. (2014) studied the peristaltic
transport of Prandtl nanofluid in a uniform rectangular duct.Very recently,
Nadeem (2014) presented the series solution for peristaltic flow of a Prandtl
fluid model.

Motivated by these studies,the peristaltic transport of a conducting Prandtl
fluid in a non-uniform channel with slip effects is studied under long wavelength
and low Reynolds number assumptions. The velocity field, the axial pressure
gradient, the volume flux, the pressure rise and the frictional force over one
cycle of the wave length are obtained and the results are presented graphically.

2. Mathematical Formulation

Consider the flow of a Prandtl fluid in a two dimensional symmetric non-
uniform channel. The flow is induced by periodic peristaltic wave propagation
of constant speed c. A uniform magnetic field B0 is applied in the transverse
direction to the flow. The fluid is considered to be of small electrically con-
ductivity so that the magnetic Reynolds number is very small and hence the
induced magnetic field is negligible in comparison with the applied magnetic
field. The external electric field is zero and the electric field due to polarization
of charges is also negligible. Fig. 1 represents the physical model of the flow
under consideration.

Figure 1: Physical model.

The wall deformation due to the infinite train of peristaltic waves is repre-
sented by

Y = H (X, t) = d(X) + a cos
2π

λ
(X − ct) (1)

where d(X) = d + mX;m << 1 represents linear non-uniformity of the
channel, a is the amplitude, λ is the wavelength, d is the mean half width of
the channel, m is the dimensional non-uniformity of the channel.
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We introduce a wave frame of reference (x, y) moving with the velocity c in
which the motion becomes independent of time when the channel length is an
integral multiple of the wave length and the pressure difference across at the
ends of the channel is a constant. The transformation from the fixed frame of
reference (X,Y ) to the wave frame of reference (x, y) is given by

x = X − ct, y = Y, u = U − c, v = V, p (x) = P (X, t) (2)

where (u, v) and (U, V ) are the velocity components, p and P are the pressures
in the wave and fixed frames of reference respectively.

The constitutive equation for a Prandtl fluid (following Patel and Timol
(2010))

τ =

A sin−1

(
1
C

((
∂u
∂y

)2

+
(
∂v
∂x

)2) 1
2

)
((

∂u
∂y

)2

+
(
∂v
∂x

)2) 1
2

∂u

∂y
(3)

in which A and C are material constants of Prandtl fluid model. The
equations governing the flow field, in the wave frame of reference are

∂u

∂x
+
∂v

∂y
= 0 (4)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂y

− σB2
0(u+ c) (5)

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+
∂τyx
∂x

+
∂τyy
∂y

(6)

where ρ is the density, σ is the electrical conductivity and B0 is the intensity
of the magnetic field acting along the y−axis and the induced magnetic field is
assumed to be negligible.

Due to symmetry, the boundary conditions for the velocity are

∂u

∂y
= 0 at y = 0 (7)

u+ β1τxy = −1 at y = H (following Vajravelu (2013) in wave frame of reference)
(8)
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In order to write the governing equations and the boundary conditions in
dimensionless form, the following non-dimensional quantities are introduced.

x̄ =
x

λ
, ȳ =

y

d
, ū =

u

c
, v̄ =

v

cδ
, φ =

a

d
, δ =

d

λ
, p̄ =

pd2

µcλ
, h =

H

d
,

t̄ =
ct

λ
, τ̄xx =

d

µc
τxx, τ̄xy =

d

µc
τxy, τ̄yy =

d

µc
τyy, Re =

ρdc

µ
, α =

A

µC
,

β =
αc2

6C2d
, β̄1 =

β1

d
, m̄ =

mλ

d
, q̄ =

q

dc
(9)

In view of equation (9), the equations (4) - (6), after dropping bars, reduce
to

∂u

∂x
+
∂v

∂y
= 0 (10)

Reδ
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u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ δ

∂τxx
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+
∂τxy
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−M2(u+ 1) (11)

Reδ3
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u
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+ δ
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(12)

where M2 =
σd2B2

0

µ is the square of the Hartmann number. Re is the
Reynolds number, δ is the wave number, β1 is the non-dimensional velocity
slip parameter, α and β are Prandtl parameters.

Under the assumptions of long wave length and low Reynolds number, from
equations (11) and (12), we get

∂p

∂x
=
∂τxy
∂y

−M2(u+ 1) (13)

∂p

∂y
= 0 (14)

where τxy = α∂u∂y + β
(
∂u
∂y

)3

The corresponding dimensionless boundary conditions in wave frame of ref-
erence are given by

∂u

∂y
= 0 at y = 0 (15)

u = −1 − β1τxy at y = h = 1 +mx+ φ cos 2πx (16)
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The volume flow rate q in a wave frame of reference is given by

q =

h(x)∫
0

udy. (17)

The instantaneous flux Q(X, t) in a fixed frame is

Q(X, t) =

h∫
0

UdY =

h∫
0

(u+ 1)dy = q + h. (18)

The time average flux Q̄ over one period of the peristaltic wave is

Q̄ =
1

T

T∫
0

Qdt =

1∫
0

(q + h)dx = q + 1. (19)

3. Perturbation solution

The equation (13) is non-linear and its closed form solution is not possible.
Hence we linearize this equation in terms of small Prandtl parameter β. So we
expand u, dpdx and q as

u = u0 + β u1 +O(β2)

dp

dx
=
dp0

dx
+ β

dp1

dx
+O(β2) (20)

q = q0 + β q1 +O (β2)

Substituting (20) in the equation (13) and in the boundary conditions (15)
and (16) and then equating the coefficients of like powers of β and neglecting
the terms of β2 and higher order, we get the following system of equations of
different orders:
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Zeroth order system

The governing equation is

dp0

dx
= α

∂2u0

∂y2
−M2(u0 + 1) (21)

The respective boundary conditions are

∂u0

∂y
= 0 at y = 0 (22)

u0 = −1 − β1α
∂u0

∂y
at y = h (23)

Solving the equation (21) by using the boundary conditions (22) and (23), we
get

u0 =
1

N2α

dp0

dx

(
coshNy

(coshNh+Nαβ1 sinhNh)
− 1

)
− 1 (24)

and the volume flow rate is given by

q0 =

h∫
0

u0dy =
1

N3α

(
dp0

dx

)[
sinhNh

(
1 −N2hαβ1

)
−Nh coshNh

coshNh+Nαβ1 sinhNh

]
− h

(25)
From equation (25), we get

dp0

dx
= N3α

[
(q0 + h) coshNh+Nαβ1 sinhNh

sinhNh (1 −N2hαβ1) −Nh coshNh

]
(26)

where N = M√
α

First order system

The governing equation is

dp1

dx
= α

∂2u1

∂y2
+

∂

∂y

[(
∂u0

∂y

)3
]
−M2u1 (27)

∂u1
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u1 = −αβ1
∂u1

∂y
− β1

(
∂u0

∂y

)3

at y = h (29)
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Solving the equation (27) by using the equation (24) and the boundary
conditions (28) and (29), we get

u1 =
1

N2α

dp1

dx

[
coshNy

coshNh+Nαβ1 sinhNh
− 1

]
+

[
sinhNy

16N3α4 (coshNh+Nαβ1 sinhNh)
3 y

+
β1 sinh3Ny

12N3α3 (coshNh+Nαβ1 sinhNh)
4 +

B

384N4α4 (coshNh+Nαβ1 sinhNh)
4

](
dp0

dx

)3

(30)

where

B = −3 coshNh− 3 cosh3Nh+ 3 coshNh(4hN2αβ1 + 2 cosh2Ny

−3 sinh2Nh+ 2 sinh2Ny) + 3N (3αβ1 + 4h) sinhNh− 9Nαβ1 sinh 3Nh

+6Nαβ1(cosh2Ny + sinh2Ny) sinhNh

and the volume flow rate is given by

q1 =

h∫
0

u1dy =
1

N3α

dp1
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[
sinhNh−Nh (coshNh+Nαβ1 sinhNh)

(coshNh+Nαβ1 sinhNh)

]
+

(
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)3

B1

(31)
where B1 = 12hN−8 sinh 2hN+sinh 4hN+24Nαβ1 sinh4Nh

192N5α4(coshNh+Nαβ1 sinhNh)4

From equation (31), we have

dp1

dx
=

N3α (coshNh+Nαβ1 sinhNh)

(sinhNh (1 −N2hαβ1) −Nh coshNh)

(
q1 −B1

(
dp0
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)3
)

(32)

Substituting the equations (26) and (32) in the relation dp0
dx = dp

dx − β dp1dx and
neglecting the terms greater than O(β), we get

dp

dx
=

N3α (coshNh+Nαβ1 sinhNh)

(
(q + h) − βB1

(
N3α(q+h)(coshNh+Nαβ1 sinhNh)
sinhNh(1−N2hαβ1)−Nh coshNh

)3
)

(sinhNh (1 −N2hαβ1) −Nh coshNh)
(33)

The dimensionless pressure rise and frictional force per one wavelength in
the wave frame are defined, respectively as

∆P =

1∫
0

dp

dx
dx (34)
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and

F =

1∫
0

h

(
−dp
dx

)
dx. (35)

4. Result and discussion
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Figure 2: The variation of ∆P with Q̄ for
different values of β with M = 1, β1 = 0.1,
α = 1.5, φ = 0.6 and m = 0.1.
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Figure 3: The variation of ∆P with Q̄ for
different values of α with M = 1, β1 = 0.1,
β = 0.1, φ = 0.6 and m = 0.1.
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Figure 4: The variation of ∆P with Q̄ for
different values of M with α = 0.5, β1 =
0.05, β = 0.1, φ = 0.6 and m = 0.1.
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Figure 5: The variation of ∆P with Q̄ for
different values of β1 with M = 1, α = 1.5,
β = 0.1, φ = 0.6 and m = 0.1.

From equation (34) we have calculated the pressure difference as a function
of Q̄. The variation of ∆P with Q̄ for different values of Prandtl parameters β
and α, slip parameter β1, Hartmann numberM and the non-uniform parameter
m are shown from Figs. 2 to 6. From Fig. 2 we observe that for the peristaltic
pumping (∆P > 0), the flux Q̄ increases with increasing the Prandtl parameter
β, for free pumping (∆P = 0) no variation is found in the flux whereas in the
co-pumping (∆P < 0) the flux decreases with an increase in β and from Fig.
3 opposite behaviour is noticed for another Prandtl parameter α. In Fig. 4
we find that the pumping curves coincide at the point Q̄ = 0.15, the pressure
rise ∆P increases with increasing M when Q̄ < 0.15 and when Q̄ > 0.15 the

Malaysian Journal of Mathematical Sciences 43



Kumar, M. A. et al.

Β = 0.1,  0.2,  0.3

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

x

Figure 6: The variation of dp
dx with x for dif-

ferent values of β with M = 1, β1 = 0.1,
α = 1, , φ = 0.5, m = 0.1 and Q̄ = −1.
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Figure 7: The variation of dp
dx with x for dif-

ferent values of α with M = 1, β1 = 0.1,
β = 0.1, , φ = 0.5, m = 0.1 and Q̄ = −1.
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Figure 8: The variation of dp
dx with x for dif-

ferent values of β1 with M = 1, α = 1.5,
β = 0.1, φ = 0.5, m = 0.1 and Q̄ = −1.
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Figure 9: The variation of dp
dx with x for dif-

ferent values of M with β1 = 0.1, α = 1.5,
β = 0.1, φ = 0.5, m = 0.1 and Q̄ = −1.
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Figure 10: The variation of dp
dx with x for

different values of m with β1 = 0.1, α = 1.5,
β = 0.1, φ = 0.5, M = 1 and Q̄ = −1.
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Figure 11: The variation of F with Q̄ for
different values of α with M = 1, β1 = 0.1,
β = 0.1, φ = 0.6 and m = 0.1.

pressure rise decreases with increasing M . From Fig. 5 we observe that the
Q̄ decreases with an increase in β1 in the pumping region, whereas in the co-
pumping region Q̄ increases with an increase in β1. Equation (33) gives the
expression for the axial pressure gradient dp

dx in terms of x. Pressure gradient
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Β = 0.0,  0.1,  0.2

0.0 0.2 0.4 0.6 0.8 1.0

-1

0

1

2

3

4

Q

F

Figure 12: The variation of F with Q̄ for
different values of β with M = 1, β1 = 0.1,
α = 1, φ = 0.6 and m = 0.1.
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Figure 13: The variation of F with Q̄ for
different values of β1 with M = 1, β = 0.1,
α = 1, φ = 0.6 and m = 0.1.
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Figure 14: The variation of F with Q̄ for different values of m with M = 1, β1 = 0.1, β = 0.1,
α = 1 and φ = 0.6.

profiles are plotted in Figs. 6-10 to study the effects of β, α, β1, M and m.
From Fig. 6 we notice that the pressure gradient increases with the increase of
β . In Fig. 7 we observe that the pressure gradient decreases by increasing α.
From Fig. 8 and Fig. 9 we notice that as β1 increases, the magnitude of the
pressure gradient decreases whereas the magnitude increases by increasing the
Hartmann number. In Fig. 10 we see that as m increases, the magnitude of
the pressure gradient decreases.

Finally from equation (35), we have calculated frictional force F as a func-
tion of Q̄ for α and β are depicted in Figs.11to 14. From Figs. 11 and 12, it is
found that friction force decreases and then increases with an increase in α and
β. From Figs. 13 and 14, it is found that friction force increases for smaller
values of Q̄ and then decreases with an increase in β1 and m for the higher
values of Q̄. In general, figures 11 to 14 shows that the frictional force F has
opposite behavior compared to pressure rise ∆P .
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5. Concluding Remarks

The present paper deals with the peristaltic transport of a Prandtl fluid in
presence of magnetic field and velocity slip conditions at walls of a non-uniform
channel. The flow is investigated in a wave frame of reference moving with the
velocity of the wave. By using a perturbation method, the expressions for
velocity, pressure gradient, pressure rise and frictional force per wave length
are obtained. The features of the flow characteristics are analyzed through
graphs and the results are discussed in detail. Some of the interesting findings
are made from the analysis

• The amplitude of the pressure gradient decreases with increasing the ve-
locity slip parameter β further it increases with increasing the Hartmann
number M .

• The frictional force has the opposite behavior when compared with the
pressure rise.

• The results of no slip condition can be observed by considering β1 = 0

References

Hayat, T., N. S. H. A. A. (2012). Peristaltic motion of phan-thien-tanner fluid
in the presence of slip condition. Journal of Biorheology, 25(1):8–17.

Latham, T. (1996). Fluid motion in a peristaltic pump. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, USA.

Mekheimer, K. S. (2004). Peristaltic flow of blood under the effect of magnetic
field in a non-uniform channels. Appl. Math. Comput., 153:510–523.

Nadeem, S., R. A. E. R. (2014). Series solution of three dimensional peristaltic
flow of prandtl fluid in a rectangular channel. JAppl Mech Eng., 3:139.

Nooreen Sher Akbar., Nadeem, S. C. L. (2012). Peristaltic flow of a prandtl fluid
model in an asymmetric. International Journal of the Physical Sciences.,
7(5):687–695.

Patel, M. and Timol, M. (2010). The stress strain relationship for viscous-
inelastic non-newtonian fluids. Int. J. Phys. Sci., 6(12):79–93.

Prasanna Hariharan, Seshadri, V. R. K. B. (2008). Peristaltic transport of non-
newtonian fluid in a diverging tube with different wave forms. Mathematical
and Computer Modelling, 48:998–1017.

46 Malaysian Journal of Mathematical Sciences



Influence of velocity slip conditions on MHD peristaltic flow

RahmatEllahi., Arshad Riaz., N. S. (2014). Peristaltic flow of a prandtl fluid
model in an asymmetric. Appl Nanosci., 4:753–760.

Saravana, R., H. R. R. S. S. V. S. K. A. (2013). Influence of slip, heat and
mass transfer on the peristaltic transport of a third order fluid in an inclined
asymmetric channel. Int. J. of Appl. Math and Mech, 9(11):51–86.

Saravana, R., S. S. V. S. H. R. R. K. A. (2011). Influence of slip conditons, wall
properties and heat transfer on mhd peristaltic transport of a jeffrey fluid in
a non-uniform channel. International Journal of Innovative Technology and
Creative Engineering, 1(2):10–24.

Srivastava, L. M., S. V. P. and Sinha, S. N. (1983). Peristaltic transport of a
physiological fluid: Part i. flow in non-uniform geometry. Biorheol., 20:153–
166.

Vajravelu, K., S. S. S. R. (2013). Combined influence of velocity slip, temper-
ature and concentration jump conditions on mhd peristaltic transport of a
carreau fluid in a non-uniform channel. Applied Mathematics and Computa-
tion, 225:656–676.

Malaysian Journal of Mathematical Sciences 47


	Introduction
	Mathematical Formulation
	Perturbation solution
	Result and discussion
	Concluding Remarks

